

AFCI Systems Analysis Overview

Dr. Ralph G. Bennett
National Technical Director of Systems Analysis, AFCI
Director, Advanced Nuclear Energy, INEEL
27 August 2003

Outline

- Systems Analysis Activities in FY 03
- MIT Report on the Future of Nuclear Energy
- Changes in the AFCI
- Systems Analysis Activities in FY 04 and beyond

Questions for Systems Analysis

For an Advanced Fuel Cycle in the U.S.:

- What are the overall benefits?
 - Optimize the use of the first repository
 - Reduce the need for, or avoid a second repository
 - Remove long-term barriers to construction of NPPs
 - Improve energy security and sustainability
- What is needed (technology, facilities, capabilities) to achieve the benefits?
- What schedule is needed to achieve the benefits?
- What analyses and engineering data are needed to support a decision on the second repository before December 2007*?
- (*statutory date: January 1, 2010)

Systems Analysis Hierarchy

Broader Viewpoint

- Broad Systems Studies
- Transmutation Systems Studies and Integrated Model Development
- Individual Generation IV Systems

Detailed Assessment

Systems Analysis in FY 2003

AFCI Activities:

- AFCI Report to Congress issued in January 2003
- Transmutation Systems Studies developed as planned
 - Quantitative Objectives and Criteria
 - Transmutation Options
 - Transmutation Analyses
- Broad Systems Studies initiated

Generation IV Activities being coordinated with AFCI:

- Economics and Proliferation Resistance & Physical Protection Evaluation Methodology Working Groups Formed
- First year of System Preconceptual Design Studies

Accomplishments in Systems Analysis

Developed a systematic understanding of the capability of reactor systems to handle transmutation:

- Deep burn of Pu in LWR's
- Potential for burning Minor Actinides in LWR's
- Transuranic burning in Fast Reactors and ADS's

Developed initial quantitative assessments of repository benefits

- Heat load
- Dose and radiotoxicity

Refined the definition of the reference flowsheet

- Preferred pathways (storage or transmutation) for key elements
- Technical criteria for each technology

Initiated the development of quantified systems objectives

Dynamic simulations to quantify infrastructure requirements

Five-Year Overview of Systems Analysis

^{*} Currently aimed at December 2007

MIT Report Conclusions (wrt DOE NE)

Areas of Good Agreement

- Nuclear power should remain a long-term option for the U.S. energy supply, and requires a bold approach to overcoming the major issues (of waste, economics, safety)
- NP 2010 should be supported, and 'first mover' plants should be strongly encouraged
- Growth in nuclear energy will drive the need for expanded/improved means of dealing with waste
- Advanced fuel cycle systems need to be rigorously studied, and reliable engineering data must support the analyses
- HTGR should be developed

MIT Report Conclusions (wrt DOE NE)

Areas of Disagreement

- How to make nuclear power economically competitive (subsidies, loan guarantees, technology improvements)
- The potential of nuclear generated hydrogen to make a significant contribution to climate change
- Costs, safety, waste impacts and proliferation resistance of current and advanced fuel cycles
- Long-term use of the once-through fuel cycle with increased dependence on interim storage, to allow decades before decisions regarding deployment
- Viability of deep borehole disposal

MIT Report Conclusions

Recommendations Being Adopted in DOE NE Programs

- No large-scale demonstrations or deployment of advanced fuel cycle technology planned in the next decade
- Increased emphasis on development of technology at laboratory scale
- Broader R&D scope in separations, fuels and systems
- Expansion of current scenarios of advanced and once-through fuel cycles
- In-depth analysis of economics, safety, proliferation resistance and waste impacts

Systems Analysis Directions in FY 2004

Continuing Transmutation Systems Studies

- Expanding the fuel cycle analyses to support economics, safety, nonproliferation and waste impacts
- Emphasizing the time dependence to examine 'transition' from current to future states

Ramping Up Broad Systems Studies

- Defining a manageable set spanning wide variety of options and uncertainties
- Emphasizing the analysis of sustainability, economics, safety, nonproliferation and waste impacts
- Developing criteria and metrics more fully
- Starting to address deployment timing, siting, transportation
- Interfacing with our well-developed analysis capabilities
- Collaborating with DOE RW
- Evaluating tradeoffs and providing feedback to AFCI R&D planning

Integrating Generation IV and AFCI

- Common goals, objectives, measures and requirements
- Integrated activities and organization

- FY 2004 Initial report on repository benefits and options
- FY 2005 Initial report on the key benefits and technology needs of an advanced fuel cycle for the U.S.
- FY 2005 Initial report on advanced fuel cycle deployment options, including cost/benefit analysis
- FY 2005 Initial report on requirements of the Generation IV systems needing advanced fuel cycle development
- FY 2005 Initial report on fast spectrum transmutation options, including Generation IV and any other needed options
- FY 2006 Interim report on advanced fuel cycle deployment options, including cost benefit analysis, and report on progress and comparative merits of alternative reprocessing technologies
- FY 2007 Provide necessary information for a Dec 2007 Secretarial recommendation on the need for a second repository with a final report on a recommended US transmutation approach addressing options on the path, or paths, forward

AFC Scenarios – Three Main Groups

- 1. Thermal Once-Through (with expanded options)
 - No-growth, moderate growth
 - Interim storage
 - Separations, alternative disposal, decay storage
 - Gas reactors, hydrogen growth
 - Advanced LWR fuels
 - Long-term repository options
- 2. Thermal Recycle (with expanded options)
- 3. Thermal and Fast Recycle

1) Thermal Once-Through

2) Thermal Recycle

3) Thermal and Fast Recycle

Summary

- The major objective is a future, integrated, sustainable fuel cycle with waste management, economics, safety and proliferation resistance drivers, and which transitions from the current situation in the U.S. to meet future needs
- Special emphasis will be placed on systems analysis to quantify performance
- Requirements on AFCI and Generation IV systems will be integrated
- Opportunities for shared or common activities between the programs will be exploited